США: левитирующее стекло. Раскалённые капли высвечивают будущее

NASA разрабатывает новые материалы для электроники, медицинской техники и других важных технических сфер. Для получения уникальных образцов нужно, чтобы к ним в процессе создания не прикасались не только руки человека, но вообще какие-либо инструменты. У NASA есть установка, которая позволяет это проделать. 

Представьте, что вы сильно нагреваете некие исходные вещества, а потом охлаждаете смесь, чтобы создать новый материал. 

Из чего бы вы ни сделали ёмкость для расплава, она так или иначе вступит в химическое или физическое взаимодействие с вашим веществом и неизбежно загрязнит его. 

Это означает, что вы не сможете с высокой точностью определить свойства нового материала. 

Другое, не менее важное следствие состоит в том, что ваш образец будет иметь характеристики отличные от тех, что вы планировали, сочиняя оригинальный «рецепт». 

Можно ли провести все стадии эксперимента, ничем не прикасаясь к образцу? На ум сразу приходит невесомость и космическая станция, но есть более простой выход. 

С 1997 года в космическом центре Маршалла (Marshall Space Flight Center) работает удивительный аппарат – «Электростатический левитатор». 

До сих пор он регулярно приносит эффективные и, можно сказать, эффектные научные результаты. 

Сердце прибора – вакуумная камера с шестью электродами. Шарики исходной смеси подвешиваются в центре камеры в мощном электростатическом поле. 

Для восполнения электрического заряда образца (который теряет электроны при сильном нагреве) служит специальная дейтериевая дуговая лампа. 

Пересекающиеся под прямым углом лазеры используются для контроля положения образца в пространстве. Компьютеры регулируют заряд на электродах, чтобы удерживать шарик точно в центре камеры. 

И, опять-таки, мощный лазер нагревает его до расплавленного состояния. Также дистанционно учёные изучают свойства получаемых сплавов как в жидком, так и в застывшем состоянии. 

Лишь когда все эксперименты проведены, остывшую каплю можно с чистой совестью взять в руки. 

Главное назначение прибора – создание необычных сортов стекла, металлических сплавов, керамики и анализ их свойств. 

Сейчас с центром Маршалла сотрудничает маленькая частная фирма Containerless Research, Inc (CRI). Именно благодаря левитатору она изобрела REAl-стекло. 

REAl – это аббревиатура, означающая «редкоземельный алюминиевый оксид» (Rare Earth and Aluminum oxides). Состоят эти стёкла из смеси нескольких редкоземельных оксидов, оксида алюминия и небольшой примеси диоксида кремния. 

Этому материалу уже подбирают сферы применения. Например, в медицине. 

«Большинство хирургических лазеров используют дорогие кристаллы, такие как сапфиры, – объясняет доктор Ричард Вебер (Richard Weber), один из руководителей CRI. – И эти кристаллы не только дороги, но и сильно ограничивают доступный диапазон длин волн и энергии. REAl-стекло потенциально даст хирургам больший выбор. 

Новые лазеры позволят куда гибче подстраивать излучение, исходя из того, что лучше всего подходит для определённого типа хирургии». 

Работа Вебера финансируется NASA. И не спроста – новые стеклянные и керамические материалы могут оказаться незаменимыми при создании космических кораблей будущего. А также – новых научных инструментов. 

Вообще, разнообразные материалы, полученные благодаря левитатору, со временем могут заметно улучшить технику в самых различных областях. 

Скажем, появятся новые оптические системы связи для Интернета или лазеры для выкройки металлических деталей автомобилей. 

По словам Вебера, после того, как свойства нового материала и процесс его получения детально изучены, можно рассчитать, как произвести такой же материал традиционным способом – в формах для отливок. 

Это как раз и открывает новым стёклышкам путь на конвейер. 

Кстати, среди исследуемых на левитаторе материалов есть такой необычный их класс, как металлическое стекло. 

Это металл или сплав металлов, который при комнатной температуре и в твёрдом состоянии существует в аморфной агрегатной форме (как стекло), а не в виде кристаллической решётки, которую традиционно считают едва ли не самым главным признаком металлов. 

Секрет его получения в том, что сверхчистый образец охлаждается, плавая в вакууме, не касаясь стенок. 

А раз нет центров кристаллизации и внешних механических возмущений, капля металла остаётся жидкостью, даже при температуре много ниже точки плавления. 

Затем в какой-то момент она вдруг резко затвердевает (за доли секунды), испуская при этом вспышку света. И получается металлическое стекло. 

Такие материалы обладают иными магнитными свойствами, а также – намного более прочны и твёрже, чем те же самые вещества в традиционном кристаллическом виде. 

Металлические стёкла уже нашли применение в производстве ряда изделий (например, элитного спортинвентаря, вроде теннисных ракеток), но потенциал необычного материала далеко не исчерпан. 

Не менее любопытно и биологически активное стекло, которое будучи введённым в организм, в конечном счёте распадается, когда его работа проделана. Микроскопические количества такого стекла, говорят в NASA, могут использоваться для обработки раковой опухоли. 

Разумеется, самые интересные образцы стёкол можно создать в условиях микрогравитации – в космосе. Такие опыты (на борту шаттлов) уже проводились. 

Теперь Вебер планирует продолжить своё исследование, используя наземный левитатор для создания необычных сплавов и далее очищая полученный на Земле материал уже на Международной Космической Станции. 

Кстати, на Луне и в других местах в космосе много исходных компонентов для выработки стекла. А значит, для развития будущих колоний на других планетах очень важно понять – как именно создавать самые необычные его разновидности. 

Электростатический левитатор как раз помогает американским учёным в этом исследовании. 

Тем более, что если в первом левитаторе шарики расплава не могли быть больше трёх миллиметров (не хватало мощности поддерживающих полей), то со временем учёные построили более крупные установки 

В том числе, позволяющие выпускать ограниченные партии новых материалов в виде, скажем, цилиндров диаметром сантиметр и длиной сантиметров шесть. А это уже шаг к промышленному производству «космического», левитирующего стекла на Земле. 

Поделиться в соц. сетях
Опубликовать в Facebook
Опубликовать в Одноклассники
Опубликовать в Яндекс
Опубликовать в Google Plus
Опубликовать в LiveJournal

Комментарии:

Оставить комментарий

Ваш email нигде не будет показанОбязательные для заполнения поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>