Создано уникальное волокно крепче Кевлара

Исследователи из Северо-Западного университета создали новый вид волокна, которое крепче Кевлара. Группа, состоящая из специалистов в нескольких областях, создала высококачественное волокно из углеродных нанотрубок и полимера, которое отличается невероятной прочностью, крепостью и сопротивлением разрушению.

Используя передовой метод электронной микроскопии, группа смогла протестировать и изучить волокна во многих различных масштабах — начиная от нано-масштаба и заканчивая макро-масштабом. Это помогло им понять, как именно малейшие взаимодействия влияют на качество материала.

«Мы хотим создать новое поколение волокон, которые отличаются крепостью и прочностью. Большим препятствием в создании волокон, является необходимость идти на компромисс между крепостью и эластичностью материала. Мы же хотим волокно, которое обладает обоими этими качествами. Волокна, которые мы изготовили, показывают высокие результаты, как в эластичности, так и по части прочности. Они могут поглотить и рассеять большое количество энергии, не разорвавшись. У этих волокон широкий спектр применения в оборонной и аэрокосмической областях», — сказал Горацио Эспиноза.

Создание нового волокна исследователи начали с углеродных нанотрубок — цилиндрических молекул углерода, которые являются одними из самых крепких молекул в природе. Но, когда их собирают в кучу, то они теряют прочность — трубки начинают буквально скользить друг между другом.

Команда добавила полимер к нанотрубкам, чтобы зафиксировать их на месте, а затем сделала из нового материала пряжу. Они протестировали крепость этого материала с помощью специальных тестов, с использованием сканирующего электронного микроскопа. Этот мощный микроскоп помогал увидеть деформацию материала.

Эта технология позволила исследователям получить изображения материала в невероятно большом разрешении и увидеть деформацию и разрывы, изучив материал в нескольких масштабах.

В результате получился материал, который крепче Кевлара, — то есть, его способность поглощать энергию не разрываясь выше. Результаты исследования были опубликованы в журнале ACS Nano.

Поделиться в соц. сетях
Опубликовать в Facebook
Опубликовать в Одноклассники
Опубликовать в Яндекс
Опубликовать в Google Plus
Опубликовать в LiveJournal

Комментарии:

Оставить комментарий

Ваш email нигде не будет показанОбязательные для заполнения поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>